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Abstract
Recent theoretical work has highlighted several mechanisms giving rise to so-called long transient dynamics. These long tran-
sients tantalizingly appear to replicate dynamics seen in real systems—with one critical difference: ecological data is noisy, a 
reality theoretical work often ignores. In general, stochasticity is known to have important consequences: it can qualitatively 
alter model dynamics as well as impact our ability to infer underlying processes through statistical analysis. To explore the 
effect of stochasticity on qualitative model behavior and the implications for our ability to infer underlying mechanisms, we 
generated time series from a simple model of long transient behavior with multiplicative noise. We then examined whether 
noise qualitatively changes the expected dynamics of the system and the insights that four different statistical methods could 
provide about the underlying dynamics. We found that the expected duration of the long transient was significantly reduced 
in the stochastic model compared to the deterministic model. These transient dynamics arise for parameterizations very 
near to a bifurcation point in the deterministic model, and we also found that as we varied parameterizations to include two 
alternative stable states, stochasticity caused the population to jump from one basin of attraction to another, resulting in time 
series that suggest long transient dynamics. Despite challenges estimating the underlying model parameters, we illustrate 
that statistical inference on a single realization may still provide insight into the presence of a ghost attractor. Further, we 
highlight that inference improves, across parameterizations, for an increasing number of realizations of the process.

Keywords Inference · Model fitting · Stochasticity · Transient dynamics · Nonparametric models

Introduction

While theoretical ecology has often focused on asymptotic 
analyses that assume stationarity, there is growing recogni-
tion that many realistic ecological systems can experience long 

periods of transient dynamics, calling this common assump-
tion of stationarity into question (Hastings and Higgins 1994; 
Hastings 2001; Hastings et al. 2018). Hastings et al. (2018) 
introduced several important mechanisms that can give rise to 
long transients, such as ghost attractors and crawl-bys. These 
mechanisms may be present in deterministic models that are 
based on an understanding of relevant ecological processes. In 
addition to these theoretical results, long transients have also 
been implicated in empirical studies, either explicitly (Gleeson 
and Tilman 1990; Van Geest et al. 2007) or implicitly, using 
the language of regime shifts (Ling et al. 2015).

Here, we seek to better understand the behavior of one such 
mechanism, the ghost attractor (Fig. 1b), in the presence of 
stochasticity. Stochasticity is ubiquitous in ecological sys-
tems (Bartlett 1960) and has important consequences both for 
our ability to infer an underlying model or process through 
statistical analysis and in qualitatively altering the dynamics 
the model produces relative to the deterministic skeleton. For 
example, stochasticity can create or disrupt persistence and 
co-existence, create oscillatory cycles or drive regime shifts 
(Boettiger 2018).
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These complex outcomes of noise may obscure how well 
we can use current statistical approaches to identify long 
transients in real ecological data. To date two major classes 
of statistical models—phenomenological and mechanistic—
could be used to identify and understand long transients in 
empirical ecological systems. Phenomenological approaches 
are often used to describe the shift from one state to another. 
Several such methods have been used to identify transitions 
in dynamics in noisy data that seem to exhibit a regime shift 
or a long transient; e.g., changepoint analysis has been used 
to detect changes in climatic regimes (Beaulieu et al. 2012) 
and Hidden Markov Models may detect transitions in a 
disease state (Chen et al. 2016). These methods describe 
patterns in data without requiring any understanding of 
the underlying mechanisms. Alternatively, we may build a 
model that captures the hypothesized key mechanisms in 
the system of interest and then fit it to the time series to 
infer parameter values. Provided these key mechanisms are 
understood, this approach may yield greater insights into the 
system’s behavior as well as greater predictive power. How-
ever, even if the relevant mechanisms are fully understood, 
it is unclear what the implications for inference may be in 
these systems, as there may be qualitative changes in the 
realized dynamics caused by the presence of stochasticity.

To explore the effect of stochasticity on realized dynam-
ics and the implications for our ability to infer underlying 
mechanisms, we generated time series from a simple ghost 
attractor model with multiplicative noise. The ghost attractor 
occurs for parameter values very near to a bifurcation point; 
shifting parameters across that bifurcation point results in a 
deterministic model with two alternative stable states. For 
comparison, we also generated time series from this model 
with alternative stable states. We then addressed three ques-
tions: (1) Does the addition of noise qualitatively change 
the expected dynamics of the system? (2) In this idealized 
scenario with abundant (simulated) data, which statistical 

approaches can provide information on the underlying 
deterministic model? (3) How can this inform the way we 
approach time series with suspected long transient behavior 
in real, and often limited, ecological datasets?

We found that the ghost attractor model was highly sensi-
tive to multiplicative noise, with the mean behavior of the 
stochastic model displaying a significantly reduced transient 
period. The addition of noise also caused qualitative changes 
to the model parameterized to have alternative stable states, 
as the noise was able to push the population from one basin 
of attraction to the other, resulting in realized behavior that 
displays a long transient period. In spite of this, we found 
that statistical inference on a single realization could still 
provide insight into model parameters and that our ability 
to distinguish between underlying deterministic models 
improves for an increasing number of realizations of the 
process.

A model with a ghost attractor

To explore the effect of stochasticity on the realized dynam-
ics of a model with long transients, as well as our ability 
to gain insight into the system, we added noise to a model 
first introduced in May (1977). This model has been used 
to understand the potential consequences of herbivore over-
population in several ecosystems including North Ameri-
can forests (Côté et al. 2004), Caribbean coral reefs (Dulvy 
et al. 2004), and semi-arid regions (Rietkerk and van de 
Koppel 1997).

Consider a plant population of size x which grows logisti-
cally with intrinsic growth rate r and carrying capacity K. 
Suppose this plant species is consumed by a grazer which is 
assumed to remain at a constant density with consumption 
of the plant resource following a Holling Type III functional 
response. Then the population density of the plant follows 
the equation
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Fig. 1  (a) An example of a system that appears to be in a steady state 
for 500 time steps, but then suddenly jumps up to a different, appar-
ently stable value. (b) The potential function for a model showing a 
ghost attractor for values of x, the state variable, around 0.5. (c) The 
derivative of the potential function shown in (b). Points that get near 
to the line y = 0 but do not cross correspond to the ghost attractor 

(red star), while those that cross the line correspond to the stable state 
(blue star). The time series in (a) was generated from Eqs. (2) and 
(3), with parameters r = 0.05 , K = 2 , a = 0.023 , h = 0.38 ,  q = 5 , and 
� = 0.02 . The functions in (b) and (c) come from the deterministic 
herbivore-grazer model, Eq. (1), with the same parameters
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where h is the half-saturation constant (i.e., the plant density 
at which the realized grazing rate is a/2), a is the maxi-
mum grazing rate, and q determines the sigmoidal shape 
of the type III functional response term. For certain param-
eter regimes, this model has two alternative stable states; a 
vegetation-dominated state and a herbivore-dominated state 
(Ludwig et al. 1978). However, if this parameter regime is 
changed slightly, one of these stable states (the herbivore-
dominated state) becomes a ghost attractor (Fig. 1).

Insight and intuition can be gained by considering 
the potential function (Beisner et al. 2003; Nolting and 
Abbott 2016) for this model (Fig. 1b). For intuition about 
the potential function, imagine a ball placed on the curve. 
If the ball is placed on the curve at x = 0 , it will roll down-
hill, lingering where the curve flattens (around x = 0.5 , the 
ghost attractor) before coming to rest around x = 1.3 (the 
steady state). Steady states and ghost attractors occur where 
the derivative of this function is near 0 (Fig. 1c). Note that 
the derivative of the potential function is just the right hand 
side of Eq. (1).

In this paper, we set the parameters of this model so that 
it has a ghost attractor and then added stochasticity around 
this deterministic core. We explored how this addition of 
stochasticity shifts the expected trajectory of the stochastic 
model away from the deterministic trajectory, and the impli-
cations of this shift for model inference. We considered the 
ability of phenomenological models to precisely describe 
the change in states, as well as the ability of model fitting to 
the known deterministic model to return the parameters used 
for data generation. We also explored the insights that may 
be gained by model fitting to a nonparametric model, which 
may increase our ability to draw inference from time series 
suspected to result from long transient dynamics.

Methods

Time series generation

A population, x(t), is assumed to evolve according to

The right side of Eq. (2) is identical to Eq. (1) and cap-
tures the variation in x(t) attributable to the deterministic 
‘core’ process. The unobserved random variable d�(t) can 
be interpreted as the incremental change in the population 

(1)
dx

dt
= rx

(
1 −

x

K

)
−

axq

xq + hq
,

(2)
d�(t)

dt
= rx(t)

(
1 −

x(t)

K

)
−

ax(t)q

x(t)q + hq

(3)dx(t) = d�(t) + dW(t).

at time t attributable to the resource-consumer dynamics 
captured in Eq. (1), and thus x̃(t + dt) = x(t) + d𝜇(t) rep-
resents the predicted population due to the deterministic 
core. To account for additional sources of variability, the 
true change in population, dx(t) , is defined according to Eq. 
(3), in which a multiplicative stochastic process dW(t) is 
specified to model random effects that impact the observed 
population. The effects of dW(t) are assumed to be small 
relative to the core process and might be due, for exam-
ple, to ephemeral changes in environmental conditions that 
impact the population size. Note that this noise affects the 
true population size, as opposed to noise in the data which 
may be introduced during sampling. We consider measure-
ment error in “Bayesian model fitting”.

The probability density of dW(t) is defined conditionally 
as

which ensures that x(t) is always nonnegative. The cases 
in Eq. (4) represent a spike and slab-type density func-
tion (Mitchell and Beauchamp 1988) with support over 
[−x̃(t),∞) . The density is equal to a Gaussian distribution 
with mean-scaled variance for values in (−x̃(t),∞) , and has 
a point mass at −x̃(t) equal to Φ

(
−(�2dt)−1

)
 . Thus, when x(t) 

is far from zero, dW(t) resembles Gaussian fluctuations, and 
when the population is close to extinction, the point mass 
at −x̃(t) implies a non-negligible probability of population 
collapse, after which x(t) = 0 for all t.

We simulated time series from Eqs. (2) and (3) for 1000 
time steps, with parameters r = 0.05 , K = 2 , a = 0.023 , 
h = 0.38 , and q = 5 , and � = 0.02 , except where oth-
erwise indicated. Initial conditions were in the vicinity 
of the ghost attractor, with x0 = 0.3 . To explore how the 
mean trajectory changed with the variance, we calculated 
the mean of 5000 realizations for each of 4 levels of vari-
ance: � = 0.005, 0.01, 0.015, 0.02 . When assessing possible 
inference, we considered both a single time series as well as 
ensembles of realizations.

Hidden markov model and changepoint analyses

We applied two standard time series approaches to our gen-
erated time series: Hidden Markov Models and Change-
point analysis. A Hidden Markov Model assumes observed 
dynamics result from an underlying Markov process whose 
transition matrix is determined through model fitting. This 
model classifies each point in the time series into one of 
two states (note that the number of states is determined 
a priori by the user). We interpreted the end of the long 

(4)

p(dW(t) = w�x̃(t)) =
⎧
⎪⎨⎪⎩

N
�
w;0, 𝜎2x̃2(t)dt

�
, x̃(t) + w > 0

Φ
�
−(𝜎2dt)−1

�
, x̃(t) + w = 0

0, x̃(t) + w < 0,
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transient as the first time at which the Hidden Markov 
Model assigned a change in state. Changepoint analysis 
determines the point in the time series which most parsi-
moniously separates the data into two statistically differ-
ent sets. We applied both of these approaches to a single 
time series as well as an ensemble of 100 simulations. All 
analyses were conducted in R (R Core Team 2019) using 
packages ecp (James and Matteson 2014) and depmixS4 
(Visser and Speekenbrink 2010).

Bayesian model fitting

We explored a Bayesian approach to inference by specifying 
moderately to weakly informative priors for all parameters in 
the model and obtaining realizations from the joint posterior 
distribution given the simulated data.

To explore the impact of measurement error in parameter 
estimation, we introduced an additional layer to the hierar-
chical model structure in Eqs. (2) and (3). We modeled y(t) 
as observations of the true population x(t) contaminated 
with the same spike and slab-type density function in Eq. 
(4) to ensure observed populations are nonnegative such 
that,

We considered values of �2
me

 ranging from 0.005 to 0.08.

Fitting to the generating mechanistic model

We performed model fitting and parameter estimation in 
a Bayesian framework. Priors specified for all parameters 
in Eqs. (2)–(5) are given in Table 1. The model was fit 
to the simulated data using a Markov chain Monte Carlo 
(MCMC) procedure with the R package nimble (de Valpine 
et al. 2017).

One notable challenge to fitting the generating model via 
MCMC was the existence of strongly correlated parameters, 
which can impede the efficiency of traditional univariate 
samplers—the default sampler for most Bayesian model fit-
ting software. To better explore the joint posterior distribu-
tion, we utilized adaptable block Metropolis-Hastings sam-
plers and ran the MCMC algorithm for 100,000 iterations,  
discarding the first half of the iterations as burn-in and thin-
ning to every 10th iteration for a total of 5,000 posterior 
draws. We assessed convergence visually using traceplots 
and checking effective sample sizes. We refer readers to 
Gelman et al. (2020) for a general guideline to implement-
ing Bayesian hierarchical models.

(5)p(y(t) = y�x(t)) =
⎧
⎪⎨⎪⎩

N
�
y;x(t), 𝜎2

me

�
, x(t) + y > 0

Φ

�
−x(t)

𝜎me

�
, x(t) + y = 0

0, x(t) + y < 0,

.

Kullback–Leibler divergence

To quantify Bayesian learning, we used the Kullback–Leibler 
(KL) divergence, which measures the information gain from 
prior to posterior distributions. For a generic parameter � 
(any parameter in Table 1), the Bayesian model fitting can 
be summarized as

where � = x(t) are the time-series data. The KL divergence 
is a measure of the discrepancy between two probability 
densities based on information entropy (Kullback and 
Leibler 1951). The KL divergence between the prior ( [�] ) 
and the posterior ( [�|�] ) distributions quantifies how much 
knowledge about � has changed in light of information con-
tained in the data (Itti and Baldi 2006). It is defined math-
ematically as

A KL divergence of 0 indicates that the prior and posterior 
distributions are identical. A large KL divergence indicates 
substantial information gain from prior to posterior. We com-
puted KL divergence using a nearest neighbor search algo-
rithm to calculate the distance from simulated samples of the 
prior distribution and the MCMC samples of the posterior dis-
tribution using the R package FNN (Beygelzimer et al. 2019).

Importance of ghost attractor

The ghost attractor in this model is found for a parameter set 
very near to a bifurcation point, where the deterministic model 
changes from having one nonzero stable state to having two 
alternative stable states. We have parameterized the model with 
a value of a = 0.023 , which is very near the bifurcation point, 
a = 0.02306 . To explore how our model fitting results depended 

(6)
[�|�]
⏟⏟⏟

posterior

∝ [�|�]
⏟⏟⏟

likelihood

[�]
⏟⏟⏟

prior

,

(7)

DKL([���]‖[�]) = �E
��� log

�
[���]
[�]

�
=
�
�

[���] log
�
[���]
[�]

�
.

Table 1  Priors specified for all parameters in the generating mecha-
nistic model, Eqs. (2)–(5), and nonparametric model Eq. (8), during 
model fitting

generating model priors nonparametric model priors

r Gamma(2, 10)

K Gamma(1, 0.1)

a Gamma(2, 10) �
i
, i = 1,… ,m = 5 N(0, 10)

h Gamma(2, 1)

Q Gamma(1, 0.1)

� Gamma(1, 10) � Gamma(1, 10)

�me Gamma(1, 10) �me Gamma(1, 10)
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specifically on the ghost attractor, we also fit models for two 
additional scenarios on either side of the bifurcation by varying 
parameter a—one with a weaker ghost attractor ( a = 0.0225 ) 
and one with two nonzero stable states ( a = 0.0235).

Nonparametric model fitting

As mentioned in “Fitting to the generating mechanistic 
model”, a challenge to implementation for Bayesian model 
fitting is strong conditional dependence among the param-
eters in the model, especially those appearing in Eq. (2). 
Strong conditional dependence can indicate the potential for 
difficult to explore likelihood surfaces and highly inefficient 
MCMC algorithms. We investigated an alternative, nonpara-
metric specification of the model in which the form of d�(t)

dt
 is 

expressed as a generic polynomial function of x(t) in a linear 
m-dimensional functional space, such that

By relaxing the assumed parametric form, it is possible 
to specify a model in which parameters do not suffer from 
the same high degree of dependence, leading to more effi-
cient implementation. The trade-off for the improvements in 
model fitting are that direct interpretation of model param-
eters in Eq. (2) via their posterior distribution is no longer 
possible. However, important features of d�(t)

dt
 such as curva-

ture, and regions of x(t) where the function is zero or nearly 
zero are still available through the nonparametric approach.

Several possible bases, �i(x(t)) , could be used to approxi-
mate the non-linear space of functions defined by Eq. (2). 
We chose an approximately orthogonal basis that spans the 
space of fourth degree polynomials.

Comparing parametric and nonparametric approaches

To compare the performance of the nonparametric and generat-
ing models, we investigated two metrics intended to reveal the 
efficiency and accuracy of each approach. To assess efficiency, 

(8)
d�(t)

dt
=

m∑
i=1

�i�i(x(t)).

we calculated the median effective sample size (ESS) for the 
derived quantity d�(t)

dt
 over a grid of values for x(t) = 0.2 and 1.8, 

and then took the median across the grid. ESS is an estimate of 
the number of independent samples drawn from a target distri-
bution. It is used to measure the efficiency of samplers whose 
realizations are not independent, such as MCMC algorithms 
that sample from posterior distributions in Bayesian analyses 
(Gelman et al. 2013). When comparing two algorithms with the 
same target distribution, in general, the more computationally 
efficient algorithm will provide a larger number of independent 
samples per total number of iterations (or per unit time, depend-
ing on the most relevant definition of efficiency).

To assess accuracy, we computed the mean squared error 
between the function d�(t)

dt
 of x(t) used to generate the data, 

and the associated marginal posterior distribution. We then 
integrated these mean errors over the range x(t) = 0.2 and 
1.8 numerically to yield the integrated mean squared error 
(IMSE). Intuitively, the model with smaller IMSE yields a 
posterior distribution of d�(t)

dt
 that more closely resembles the 

true data-generating function.
We fit both models to subsets of the ten simulated popula-

tion trajectories such that all 10 single trajectories were fit, 10 
randomly selected 2- and 5-trajectory subsets were fit, and the 
unique complete subset was fit. In the results section, ESS and 
IMSE are aggregated by number of trajectories and measure-
ment error variance. The nonparametric approach was expected 
to exhibit improved ESS, perhaps at the expense of IMSE, 
because it used a linear approximation to a non-linear func-
tion. For further details on both ESS and IMSE see Appendix.

Results

The effect of variance on model dynamics

The addition of stochasticity to the model with the ghost 
attractor resulted in mean behavior that differed from that of 
the deterministic core model. Even relatively small variance 
resulted in a substantial reduction in the expected time spent 
in the area of the ghost attractor (Fig. 2a). In spite of the fact 

Fig. 2  (a) The effect of variance on the mean trajectory. We simu-
lated 5000 realizations from Eqs. (2)-(3) and took the mean for each 
of 4 different variance levels ( � = 0.005, 0.01, 0.015, 0.02 ). (b) Three 

initial conditions centered at the ghost attractor; x0 , and x0 ± � (here 
x0 = 0.5, � = 0.07 ). (c) Deterministic trajectories resulting from the 
initial conditions in (b)
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that the variance term is symmetric around the deterministic 
model core, the asymmetry in the potential function appears 
to cause stochastic trajectories to leave the ghost attractor 
sooner, on average, than the deterministic model. A small 
positive perturbation to x in the vicinity of the ghost attractor 
results in a subsequent deterministic trajectory which leaves 
the ghost much more rapidly, while a small negative pertur-
bation to x results in a deterministic trajectory very similar 
to that without the perturbation (Fig. 2b, c).

Results from Hidden Markov Model 
and changepoint approaches

The Hidden Markov Model and changepoint analysis iden-
tified similar transition times from the ghost attractor to 
the stable state (Fig. 3). Individual realizations varied in 
the timing of their transition away from ghost attractor 
(grey lines in Fig. 4), resulting in considerable variability 
in the transition timing for a set of 100 model realiza-
tions; the standard deviation of the timing of the shift for 
the Hidden Markov Models and changepoint analysis were 
459 and 487 time steps, respectively. When averaged over 

the ensemble of time series, the average shift occurred ear-
lier than in the deterministic core model (Fig. 4), reflecting 
the behavior seen in Fig. 2a.

Parametric model fitting

Parameters from the generating mechanistic model appeared 
to be at least weakly identifiable from realized population 
trajectories, and marginal posteriors showed evidence of 
concentrating around the parameter values used to simulate 
the data as the number of realizations increased (Fig. 5). 
The derivative of the potential function was well-estimated 
in the vicinity of the ghost attractor ( x ≈ 0.5 ), which sug-
gests the simulated trajectories contain enough informa-
tion about the presence of these transient-inducing char-
acteristics to allow us to identify them from data (Fig. S1). 
Additional model fitting diagnostics confirm that while the 
parameters are only weakly identifiable, the derivative of 
the potential function ( d�(t)

dt
 ) is more strongly identifiable for 

some regions of x(t) (Figs. S2 and S3), providing insights 
into model dynamics in spite of weak insights into param-
eter values.

KL divergence

In most—but not all—cases, the KL divergence shows 
increasing trends from 1 to 10 realized trajectories (top 
right corner of each sub-plot in Fig. 5). This general pat-
tern of increased KL divergence for increasing realizations 
is visually consistent with the densities shown in Fig. 5, 
where more information is gained by using a larger num-
ber of realized population trajectories. Observe, however, 
that for parameters r, q, a and h, more realizations did 
not always improve the KL divergence. It should also be 
noted that the posteriors increasingly concentrate around 
the values used to simulate the data. Finally, changes in 
information about certain parameters as measured by KL 
divergence are non-linear in the number of realized trajec-
tories. For example, much more is learned about h and K 
in moving from 1 to 2 realizations than 2 to 5, while more 
is learned about q when we increase the number of realiza-
tions from 5 to 10.

Fig. 3  Illustrative model results 
for a single time series. (a) 
Hidden Markov Model results, 
with two states represented by 
the two colors. (b) Changepoint 
analysis. The vertical blue line 
is the changepoint, signifying 
the most parsimonious break in 
the time series 0.3
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Fig. 4  Results from the Hidden Markov Model (dotted vertical line) 
and changepoint analysis (dashed vertical line) applied to an ensem-
ble of 100 time series (each realization is plotted in grey in the back-
ground). The purple curve is the deterministic model core, and the 
yellow curve is the mean of all realizations, as in Fig. 2a. Parameters 
for the realizations were r = 0.05 , K = 2 , a = 0.023 , h = 0.38 ,  q = 5 , 
and � = 0.02
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Fig. 5  Comparison of marginal posterior distributions for simula-
tions with 1, 2, 5, and 10 realized trajectories. Each “ × ” on the x-axis 
denotes the parameter value used to generate the data. KL diver-
gences from the prior to the posterior are in the top right of each sub-

plot. Parameters for the realizations were r = 0.05 , K = 2 , a = 0.023 , 
h = 0.38 ,  q = 5 , � = 0.02 , and �me = 0.01 . Note that a = 0.02306 is 
the bifurcation value of a; for larger a values, the deterministic model 
has two alternative stable states
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Sensitivity of results to ghost dynamics

When we compared scenarios with varied values of a cor-
responding to a very weak ghost attractor ( a = 0.0225 ), a 
stronger ghost attractor ( a = 0.023 ), and two alternative sta-
ble states ( a = 0.0235 ), we found negligible differences in 
our inference (Fig. 6). In all three cases, the distribution of 
the derivative of the potential functions concentrated around 
the true values as the number of realizations used in model 
fitting increased from 1 to 10.

Nonparametric model fitting

Results from the nonparametric model appeared very similar 
to those of the parametric model, with the derivative of the 
potential function similarly well-estimated in the vicinity 
of the ghost attractor (Fig. S4). Model diagnostics for the 
nonparametric model were an improvement from those of 
the parametric model (Figs. S5 and S6).

Comparing parametric and nonparametric results

The ESS is much higher for the nonparametric model than the 
generating model (Fig. 7a). This is especially true for lower 
values of measurement error; as measurement error increases, 
the difference between the ESS of the two models decreases. 
For context, there were 5,000 posterior draws, total, so for 

low measurement error, the sample size of the nonparametric 
model is nearly 5000, while that of the generating model is 
near 0. A look at the IMSE shows no clear indication which 
model fit the data better (Fig. 7b). Additionally, consideration 
of the trace plots between the parametric model (Figs. S1 and 
S3) and the nonparametric model (Figs. S5 and S6) suggests 
identifiability issues with the parametric model which are not 
present for the nonparametric model.

Discussion

As ecological theory on long transients has developed, so 
too has the desire to identify them in real systems. Identi-
fying long transients in natural systems would anchor the 
growing theoretical literature (Hastings 2001; Hastings 
et al. 2018), and could help narrow in on common attributes 
of such systems that may represent areas for more research 
or highlight gaps in current theory. Further, it would have 
important implications for those systems—as the presence 
of long transients means managers would have to consider 
complex possible trajectories. Depending on the goal, man-
agers may want to maintain a system in a long transient state, 
or they may desire to push a system out of its transient state 
and into the stable state.

Identifying long transients in ecological systems requires con-
necting theoretical advances, which have generally been derived 

Fig. 6  Comparison of paramet-
ric model fitting results as a is 
varied through a scenario with 
a very weak ghost attractor (top 
row), a stronger ghost attractor 
(middle row), and two alterna-
tive stable states (bottom row). 
Curves were drawn from the 
posterior distribution of d�(t)

dt
 in 

grey, pointwise median value 
in black, pointwise equal-
tailed 95% credible intervals 
as dashed, and true potential 
curve in red. Inference based on 
1, 2, or 10 realized population 
trajectories, from left to right. 
Parameters for the realizations 
were r = 0.05 , K = 2, h = 0.38 ,  
q = 5 , � = 0.02 , and �me = 0.01
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from deterministic models, to the stochasticity of the real world. 
Stochasticity enters at myriad levels, from the relative simplicity 
of measurement error, to environmental and demographic sto-
chasticity. Whichever its sources, stochasticity—depending on 
its type, magnitude and also how accurately it is accounted for 
in modeling approaches—can obscure the deterministic skeleton 
that we wish to uncover. Thus, advancing ecological theory on 
long-transients requires bridging stochastic versions of common 
models producing long transients to statistical inference methods 
that can robustly match data to pattern and process.

In a purely deterministic framework, the dynamics result-
ing from a model with a long transient can differ substan-
tially from a model with alternative stable states. However, 
the introduction of noise into this framework blurs this dis-
tinction between deterministic behaviors. In the ghost attrac-
tor model, noise shortens the expected time spent in the long 
transient state. In the model with alternative stable states, 
noise can result in dynamics with features that look like long 
transients, as the population is bumped from one basin of 
attraction to another. This work is a first step towards under-
standing whether we can infer the underlying deterministic 
behavior from a noisy time series by estimating the relevant 
parameter values.

To explore the performance of statistical inference meth-
ods, we purposefully simplified inference here by using a 
known underlying model with given parameters to generate 
time series of the system’s dynamics. This approach allowed 
us to explore the performance of various modeling approaches 
and to interrogate deterministic versus stochastic versions of 
our model to understand the limitations of these approaches.

Both the Hidden Markov Model and changepoint anal-
ysis were able to identify the key pattern of the shifting 
states of the ghost attractor model. As the timing of the 

shift varied considerably between randomly generated time 
series, the timing of the shift implicated by both models 
also varied considerably between individual time series. 
When we considered an ensemble of time series, however, 
the mean modelled shift converged to a value consistent 
with the mean of the simulated trajectories (Fig. 4). While 
these methods can categorize data into multiple states (with 
the number of states being set a priori for both models), 
they provide little insight into the underlying dynamics of 
the system.

Our Bayesian inference approach to estimating the 
underlying mechanistic model suggested that parameters 
were weakly identifiable. Posterior estimates from MCMC 
increased in accuracy and decreased in uncertainty as the 
number of model realizations increased. KL divergences 
further confirm Bayesian learning from prior to posterior 
distributions driven by data. This estimation performance 
is somewhat surprising given that stochasticity shifts the 
expected behavior away from the deterministic core. These 
findings (using a parameterization with a strong ghost 
attractor) were consistent across other formulations of the 
model—from a weak ghost attractor to a system with two 
alternative stables states. This suggests that that the ghost 
attractor does not present a unique estimation challenge 
compared to other models, but instead highlights the chal-
lenge of connecting models from the theoretical ecological 
literature to real-world noisy conditions.

As is often the case for models with high dependency 
across parameters, certain parameter estimates improved 
much more given additional realization than others, e.g., 
K, � , and �me . However, even if precise estimates for some 
parameters are not possible, the presence and location of 
a ghost attractor may still be identified (e.g., Fig. 6) by 

Fig. 7  (a) The difference in 
effective sample size (ESS) 
between the nonparametric 
model and the parametric 
(generating) model decreases 
for larger measurement error 
variance, �2

me
 . (b) No clear trend 

emerges when comparing the 
integrated mean squared error 
(IMSE) for the two model types, 
suggesting the two models fit 
similarly well. Legend entries 
refer to the number of realiza-
tions used for model fitting. 
Shaded polygons represent 
pointwise interquartile ranges 
across all subsets of a given 
size. Parameters used in time 
series generation were r = 0.05 , 
K = 2 , a = 0.023 , h = 0.38 , 
q = 5 , and � = 0.02
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considering regions where d�(t)
dt

 is very near to 0. The shape 
of d�(t)

dt
 resolves better for fewer realizations than the values 

of each specific parameter, as can be seen by comparing the 
results for 10 realizations in Figs. 5 and 6.

The findings of the nonparametric model fitting were 
very similar to that of the parametric model fitting, as seen 
through their similar IMSE values (Fig. 7b). While the ESS 
of the nonparametric model was considerably higher than 
that of the parametric model, especially for low measure-
ment error (Fig. 7a), scientific knowledge about the param-
eter values cannot be gained through consideration of the 
nonparametric model alone. Fitting to the parametric model, 
which incorporates the main mechanisms thought to deter-
mine the population size, provides important information 
into biologically relevant quantities and dynamics. Thus 
consideration of the parametric and nonparametric models 
together may yield the greatest insights; the more efficient 
nonparametric model can provide confirmation of the shape 
of the potential function found by the parametric function, 
and thus for the parameter values that accompany the para-
metric inference.

Additional modeling methods have been proposed else-
where to study seemingly similar systems. For example, 
in the literature on so-called tipping points, changes in the 
standard deviation and autocorrelation coefficient of a time 
series may provide early warning signs of tipping points 
from one regime to another (Scheffer et al. 2009; Dakos 
et al. 2008; Wissel 1984). Consideration of a time series’ 
spectral density has also been proposed (Biggs et al. 2009). 
This provides a method to identify earlier warning signs 
of tipping points than those identified by changes in the 
standard deviation and autocorrelation. However, the sys-
tem studied in this paper is different from those typically 
discussed in the literature on tipping points, which are usu-
ally attributed to a slowly shifting parameter resulting in 
a sudden bifurcation of stable states. Allowing a model 
parameter to vary explicitly with time makes the system 
non-autonomous. Since the model considered here is 
autonomous, with all parameters fixed, there is no reason 
to expect that the tools developed to analyze systems expe-
riencing tipping points should provide insights here. Indeed, 
while performing exploratory analyses of changes in stand-
ard deviation, autocorrelation, and spectral density of our 
generated time series, we found that all three methods failed 
to consistently identify the shift from the ghost attractor to 
the steady state across the realizations.

These findings suggest several areas for future theoreti-
cal work. By fitting generated data to a known underlying 
model, we have avoided the difficult step in inference of 
comparing different underlying models. Future work should 
focus on the open question of question of whether it is pos-
sible to differentiate between non-stationary behavior that 

arises from a long transient and non-stationary behavior that 
arises from a non-autonomous model with a time-dependent 
parameter that crosses a bifurcation threshold.

Our finding that the mean behavior over many realiza-
tions of the ghost attractor model with added process noise 
differs from the deterministic mean also raises the ques-
tion of whether this is generalizable to other systems with 
transient dynamics. Further work may provide insight into 
explaining and predicting the expected deviance between the 
ensemble mean and the deterministic skeleton.

Appendix

Effective sample size and integrated mean squared 
error

We computed median ESS using the effectiveSize() function 
from the coda package for the R statistical programming 
environment (Plummer 2006). We first computed the ESS 
of d�(t)

dt
 over a grid of 100 equally-spaced values between 

x(t) = 0.2 and 1.8. We then took the median value across 
the grid.

Let d�̂�P(t)

dt
 represent the functional d�(t)

dt
 in Eq. (2) evaluated 

at the values �̂� = (r̂, K̂, â, ĥ, and Q̂) . Analogously, let d�̂�NP(t)

dt
 

represent the functional in the nonparametric model given 
by Eq. (8) evaluated at 𝛽  . We defined the IMSE for either the 
parametric (P) or nonparametric (NP) approach as

The expectation was approximated using a Monte Carlo 
approximation via samples from the joint posterior distri-
bution of �̂� , and the integral was approximated numerically 
using a simple Riemannian quadrature.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12080- 021- 00518-6.

Acknowledgements The authors would like to thank the organizers of 
the Transients in Biological Systems workshop in May 2019 in NIM-
BioS at the University of Tennessee, Knoxville for the space to develop 
this article.

Funding KZ acknowledges support from the US National Science 
Foundation, DEB1926438 and the University of California, Santa Cruz, 
Committee on Research, Faculty Research Grant.

Data Availability No unpublished data were used in this study.

Code availability Code and simulated data used to generate all figures 
and analysis is freely available at https:// doi. org/ 10. 5281/ zenodo. 38973 93.

(9)

IMSEM = ∫
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